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1 Introduction

Suppose that an observation X is obtained from a distribution with density
f(z|6) = c(0) exp{Oz}h(z), —0<a<z<b< 400, (1)

where h(z) > 0 for = € (a,b) and h(z) is bounded from below on any compact set of (a, ).
The parameter  is distributed according to an unknown and unspecified prior G on the
parameter space €2, a subset of the natural parameter space Qo = {6 : c¢(f) > 0}.

Suppose that one wants to estimate 6 after observing X = z. Under the squared error
loss, the Bayes estimator is given by ¢¢(z) = E[f|X = z]. It can be computed if G is known.
In situations where G is unknown, this solution cannot work. A solution to these situations
is to apply the empirical Bayes approach to construct an empirical Bayes estimator. This
approach assumes that n independent past observations Xj, ---, X, are available. Thus an
estimator of 8 can be constructed based on Xj, ---, X,, and X = z. The estimator is called
the empirical Bayes estimator, and denoted by ¢,(z, X1, -, Xn) = én(z) = ¢n. The Bayes

risk R(¢g,G) is

R(¢6,G) = [ [(9a(z) - 0)*f(x16)dzdG(6). @)

The overall risk of ¢,, denoted by R(¢n,G), is

R($x,G) = Bl [(4a(s) - 0)*1(210)dzdG(6)]. 3)

R(¢n,G) — R(d¢, G), the difference of the (overall) risk of ¢, and the Bayes risk, is call the
regret of the estimator ¢, and used to measure the performance of ¢5. |

The above estimation problem has been considered by many authors. (See Lin (1975),
Singh (1976), Singh (1979), Pensky (1998) and the references listed there. ) Singh (1979)
signiﬁ;:antly improved the previous results in terms of the rate of convergence. He constructed
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an empirical Bayes estimator and showed that the estimator has a rate of convergence of
O(—n%i). Pensky (1998) applied advanced wavelet techniques to construct empirical
Bayes estimators and obtained a better rate.

For this empirical Bayes estimation problem, a natural question arises: what is the best
possible rate ? To answer this question, a minimax lower bound of empirical Bayes estimators
is derived and it is shown that the best possible rate is O(1/n) if 8 is distributed within a
compact (bounded) set.

Also we shall construct an empirical Bayes estimator using kernel sequence method. The
kernel sequence method enables us to use the Co-smoothness of ag(x) and ¢ () (defined
in Section 2). Thus improved estimators of ag(z) and 1¢(z) are obtained. Based on these
estimators, we construct an empirical Bayes estimator ¢,(z) and show that ¢,(x) has a rate
of convergence of O(n~*(Inn)7(Inlnn)?) under the assumption of Q C [6y,85] C Qo.

This paper is organized as follows: a minimax lower bound is derived in Section 2 by
converting the global problem into a local problem, identifying the Bayes estimator as a
functional of the marginal density of X, and constructing the hardest two-point subproblem.
The construction of the estimator ¢,(x) is presented in Section 3 and its performance is also
studied there. In Section 4, we present a few examples, which include three examples used
in Singh (1979) and the comparisons of our results with his. The proofs are given in Section
5. In Section 6, we summarize our results and make some comparisons with the results
published recently in the literature.

Finally, the readers may refer to Robbins (1956, 1964) to learn more about the empirical
Bayes approach. As for applications of the empirical Bayes estimation, one may see Bendel
and Carlin (1990), Louis (1991), Desouza (1991), Mollie and Richardson (1991), Norberg

(1989), Lahiri and Park (1991), Chen and Singpurwalla (1996) and Pensky and Singh (1999).



2 Lower Bound of Empirical Bayes Estimators

We shall obtain a minimax lower bound for empirical Bayes estimators. This will show that

the best possible rate for any empirical Bayes estimator is O(1/n).

2.1 Conversion to a Local Problem

Under the squared error loss, the Bayes estimator ¢¢(z) is the posterior mean of 6 given
X = z. Simple calculations show that

[ 0c(0) exp(0x)dG(0)

Let ag(z) = [ c(f) exp(6z)dG(6) and ¢g(z) = [0c(6) exp(0x)dG(6). Then the Bayes esti-

mator of 8 can be written as

$a(x) = : (5)

Suppose that the prior G has a compact support [f1, 6] or its support belongs to the compact

set [01,0:]. Let G be the class of this type of priors, i.e.,
g= {G : G has the support Q C [61,0:] C Qo= {6 :¢(0) > 0}} (6)

Suppose that ¢, (z) is an empirical Bayes estimator based on past data (X;, Xa,---, X,) and
the present data X = z. Let ® be the class of empirical Bayes estimators of type ¢,. We

are interested in a lower bound of

inf sup[R(¢n, G) — R(de, G)). (7)

Pn€P Geg

For any empirical Bayes estimator, Singh (1979) proved that

R(¢n, G) — R($6,G) = [ [B(¢a(x) — $o(2)))ac(2)h(z)ds. ®)



Therefore we have

Jnf, gég[R(% G) - R(¢¢, G)) (9)
= jnt, sup [[B(9u(e) = do(@)Joc()h(z)ds.

The RHS of the above equation is a global minimax lower bound of empirical Bayes estima-

tors instead of a local minimax lower bound of

inf sup[E(én(z) — da(z))?]  for some fixed =. (10)
9 €® gecg

So first we need to convert the global minimax problem into a local minimax problem. For
this purpose, we focus on the supremum of the regret over two prior distributions and use the
idea that the supremum of two positive numbers is largér than the half of the sum and the
sum is larger than the supremum. Then we are able to move the “sup” into the integration in
(9). By further moving the “inf” into the integration, a global minimax problem is changed

into a point-wise (local) problem.

Lemma 2.1. For any Gy, G2 € G, let a(z) = ag,(z) A ag,(x) and

Prinimas(0) = juf,  sup  [B(¢a(z) = o(@))’] (11)
Then
jaf sup [[B(6:(a) ~ 9o (a)) e (0)h(z)dz (12)

> %/Qﬁmzmmam(m)g(m)h(l‘)dm

Lemma 2.1 says that we can find @minimaz () locally for each = and then obtain the global

lower bound by integration. The proof of Lemma 2.1 is given in Section 5.



2.2 A Functional of the Marginal Density of X

Next we need to find @inimas(z) for each z. This is done by considering the estimate of a
functional of the marginal density of X and constructing the hardest two-point subproblem
associated with it.

Let fo(z) = [ f(z]0)dG(6) be the marginal density of X. Then fe(r) = ag(z)h(z).
Assume that h'(z) exists for z € (a,b). Then

Jfolz) _ W(z)
fo(z)  h(z)

For a fixed z, since h(z) is known, the RHS of the above equation is a functional of fg(z).

(f)G(CU) = (13)

Let T, f¢ denote this functional, i.e.,

felz) W(z) _ i
fel@) ~ hiz) = ¢a(z)

We have expressed the Bayes estimator ¢g(z) as a functional of fi as above. To find ¢, is

Tofec = (14)

to estimate the functional T, fg of fg based on a sample from fz. Therefore we apply the

results in Donoho and Liu (1991) and obtain the following lemma.

Lemma 2.2. Assume that h'(z) ezists for x € (a,b). For any G1 and G2 € G, let fo1

and fgo be the corresponding marginal densities of X. If for some constant C > 0,

/[\/fcn \/fcz 2dx < g (15)

Then for all x € (a,b), Pminimaz () defined by (11) satisfies

Pminimaz (T) > l[pc1(z) — dea(z))?, (16)

where l; > 0 is a constant and independent of x.

Combining Lemma, 2.1 and Lemma 2.2, we have: for some l; > 0

inf sup[R(¢, G) — R(dc, G)] (17)

$n€? Geg



> b [[661(@) — bea(a) [0 (¢) A o (@)h(x)d

for any G; and G5 in G subject to

[Wian@ — Tl < = (18)

for some C > 0.

2.3 A Lower Bound
In the following we shall construct suitable G; and G in G such that a desired lower bound
of Prminimas(T) can be obtained. Choose zg € (a,b). Let

90(6) = mo[c(0)] " Iip, <o<0y) (19)

and

91(0) = ma exp(60)g0(6) (20)

where m; and m, are normalizing constants. Denote

_ Vng1(6) + 90(9)
1+yn

Clearly, gg, g1 and go are prior densities with their cdf’s in G.

92(9) (21)

Lemma 2.3. Let g; and g, be defined as (20) and (21). Let f; and fy be the marginal
densities of X corresponding to the prior density g = g1 and g = g». Let ap(z), a1(z) and
as(x) be the function ag(z) corresponding to the prior density g = go, g = g1 and g = ga.
Let y(z), ¥1(x) and a(x) be the function pa(x) corresponding to the prior density g = go,

g = g1 and g = go. Then for some constant C' > 0

/(\/E —\/f)dr < —g— (22)



and for all z € (a,b)

(61(2) — do(z))? > % [ (@)¥(2) — ao(2)th (@)

where l3 s a constant independent of x.

The proof of Lemma 2.3 is given in Section 5. Under the assumption of Lemma 2.3, it

follows from (17) and (18) that

jnf, i}ép[( (#n,G) — R(dc, G))?] (24)
> 1213/[010 ";bl ao_(gl(x)wo(x)] [al(x)/\az(x)]h(a:)da:
>,
where
- %lzls / [a°($)¢1($Lg'(g1(x)¢°(x)]2 (a1 (z) A as(2)]h(z)dz < oo, (25)

and [z, 75| is a compact subset of (a, b).

Theorem 2.1. Assume that h'(z) exists. Then the best possible rate of empirical Bayes

estimators is O(1/n), i.e., for somel >0

(26)

3|~

inf sup[R(¢n, @) — R(¢c,G)] >

$n€® Geg

Note that in the above theorem, we have proved that no empirical Bayes estimator can
have a rate faster than O(1/n) if 6 is distributed within a compact (bounded) set. In the
next section, we shall construct an empirical Bayes estimator with rate which is close to this

minimax lower bound rate O(1/n).



3 Construction of an Empirical Bayes Estimator with Rate Close

to the Lower Bound Rate

In this section, we shall construct an empirical Bayes estimator under the assumption {2 C
[61,02] and then show the estimator has a rate much closer to the best possible rate obtained
in Section 2 than any other estimators appeared in the literature under the same assumptions.

Note that the Bayes estimator ¢g(z) = ¥e(z)/ac(x), which is the ratio of two unknown
functions. So we first estimate both unknown functions ag(z) and 9¢(z). Then construct
an estimator of a ratio based on the estimators of the numerator and denominator.

We apply the kernel sequence method to construct the estimators of ag(z) and Ye(z).
The idea of the kernel sequence method is to use a sequence of kernel functions and let the
kernel functions and window bandwidths vary simultaneously to obtain good estimators.
This idea has been used in Gupta and Li (2001) for constructing an empirical Bayes test for

the exponential family. It will be used here again.

3.1 Construction of an Estimator

We have defined two kernel sequences in Gupta and Li (2001) where we construct the em-
pirical Bayes test for the exponential family. Unfortunately, they are not good choices for
this estimation problem. So we have to define two different kernel sequences.

For m > 1, let

PnY™ + Py o+ p, 0Ly <1,
K()m(y) = (27)

0, otherwise,

where for 0 < s <m

—1)*(m+1)(m + s+ 1)!
P =( )(s(+ 1)!3)!§m—s)! ) (28)

9



and let

QY™ A Gy g, 0Ly <
Klm(y) =

0, otherwise,

where for 0 < s <m

(=1)** 1 (m + 2)Y(s + m + 1)!
(m — D)s!(s + 2)sl(m — s)!

qs =

In Section 5 of this paper, we shall prove that

- 1 if j=0,
/Oy]KOm(y)dy:
0 if 57=1,2,---,m,
and
1 0 if 57=0,23,---,m,
| v Kim(y)dy =

1 if j=1.

(29)

(30)

(32)

S0 kom(y) and kynm(y) are the kernels with index m. Kon(y) will be used to estimate ag(x)

and Ky, (y) will be used to estimate ¥g(z). Clearly,

/ (Kom(y))dy = / (Kom(®¥)) ®@my™ + Prm—1y™ " + - + po)dy

= Do
and
[ 1Kom)ldt < (f (kom(v))d) 2 = 9.
Similarly,
[(Kim())dy = o
and

[ 1Kim)ldy < g1

10
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(34)

(35)

(36)



Now we consider the following three cases of (1):

(

\

(I) a=-00, b=o0, h(z) | 0asz | —oco and z 1 o0;

(II) a=0, b=o00, h(z)1ooorh(z) —h; >0asz1ooand
h(z) = hy, >0 or h(z) L 0 as z | 0;

(III) a=0, b=1, h(z) - hy >0o0rh(z) | 0asz | 0and

h(z) = hy >0o0r h(z)J]0asz 11,

Note that () includes the most common exponential family distributions.

Let u = u, = 1/(Inlnn v 1), v = v, = [222] V 0 + 1, where [z] denotes the integer part

of 2. In case I, define for z € (—00,0),

and for z € [0, 00)

In Case (III), define for = € (0,1/2)

X;—z
an(z) = =237 Kou(—)
n nu ~j=1  hp(X;)

Xi—zx

W)
| (@) = 2 T TRy

11

(38)

(39)



and for z € [1/2,1)

z—-X;
« (-'17) = Llyw Kou(—1)
n nu 24§=1 " R(X;)

(41)

Klu(z_‘L)

Ya(7) = 5oz Ljma h(G)

Lemma 3.1 below says that o, (z) and 1,(z) are consistent estimators of ag(z) and g ().

Note that ; < 8 < 5. Therefore we propose an empirical Bayes estimator of § as

an ()

¢n(@) = (

3.2 Rate of Convergence of the Estimator

First we investigate the rate of convergence of o, and %,. For the distributions of Case I,
Case II and Case 111, we see that h(z) is either bounded from below or monotone in (a, ao

and [by,b) for some ag and by. Let
h(z) = h(z) Amin{h(z) : z € [ag, bo]}. (43)

As a result of the kernel sequence estimation, we have the following lemma.

Lemma 3.1. o, (z) and ¥, (z) defined in (37)-(41) have the following properties:

Elon ()] — a(@)] < apuac(s),  Varan(s)] < 621;;):5(%)), (44)
and
Bla(2)] — Y6(@)] < cgwac(z), Varlpa(e)] < e 22D (45)

> nub(z)

where ¢1, ¢y are constants and independent of x and G.

From Lemma 3.1, we see that the mean square errors of a,(z) and v, (z) are of order

O(X) or O(2). This fast rate is due to the use of the kernel sequence method.

12



The following two lemmas are necessary to compute the convergence rate of ¢,. The first

one gives a bound on the mean squared error of ¢,.

Lemma 3.2. Forany 0 <r <1

Ell¢n(@) — de(@)fF] < csog” (@)[{|Elon(z)] — ac(@)]}" +{Var[on(2)}}']
+esag” (@) [{| Blvn ()] — ve(@) [} + {Varlyn(@)]}'],

where c3, ¢4 are constants and independent of x, r and G.

Lemma 3.3. Recall fo(z) = [ f(2]0)dG(8). For any 0 <r <1
cs/(1=7r) for Case I and II,

[Us(@)d < (46)
Cs for Case III,

where c5 s a constant and independent of 7 and G.

The proofs of Lemma 3.1 and Lemma 3.3 are in Section 5 and Lemma 3.2 is a modified

version of Lemma 2.1 in Singh (1979). From Lemma 3.1 and 3.2, we have

R($n, )~ R($6,G) = [ Elign(@) - 46(@)Plac(@)h(a)ds (47)
< 03(0123(1)/ u’)’ + c3{02p0(nu)_1}r/a};"(m)h(m)h_r(m)dx
+C4(01¢I%/2Uv)2r + c4{c2q1(nu3)_1}"/aé"(w)h(m)@"(z)dw

Note that h(z) > cgh(z) for some constant cg > 0. Then

[ @h@hT @)dr < " [loc@h(e) Tde = [[fe@]Tdz. (48)

Also note that v? < n™%, pg = (v+1)? and ¢ = [v(v+ 1)(v+2)]?/3. Then for Case I and II

. (w+1)5 1 . (Inn)?
(nud)r 1-—7r 7~ “n

R(¢n,G) — R(¢c,G) = ¢z (Inlnn)?, (49)

where c; = (c3 + ¢4)(c1 + ¢2)cs/(3¢s) and 7 =1 — Inlnn/Inn, and for Case III

(v+1)° (Inn)®
nud Sser n

R(¢n,G) — R(¢g,G) = ¢7 - (Inlnn)®. (50)

13



Then we have the following theorem.

Theorem 3.1. Let the distribution of X belong to one of three cases defined by (x). If
the support of the prior G is within a compact set [01,0,] C o, then the empirical Bayes
estimator ¢, (z) defined by (42) has a rate of convergence of O(n~'(Inn)"(Inlnn)?) for the
distributions in Case I and Case II, and has a rate of convergence of O(n™*(Inn)®(Inlnn)?)

for the distributions in Case III.

Corollary 3.1. Under the assumption of Theorem 3.1 and Let G be the set of prior

distributions defined by (6). Then for the distributions in Case I and II
sup[R(¢n, G) — R(¢a, )] = O(n~*(lnn)" (Inln n)?) (51)
Geg

and for the distributions in Case III

SG%B[R(%’ G) — R(¢e, @) = O(n~ (Inn)®(Inlnn)?). (52)

From Theorem 2.1, we know that O(1/n) is the best possible rate. From Corollary 3.1, we
see that ¢, constructed by (42) has a rate close to O(1/n). Comparing the previous results
in the literature, the rate in Corollary 3.1 is the fastest one under the same assumptions.

See Section 6 for details on comparisons.
4 Examples

We shall present a few examples in this section. The first three are from Singh (1979).
Another example is used to illustrate the application of the empirical Bayes rule ¢, for the
distribution in Case III. So a brief comparison of our results with the results published in
the lit.erature will be presented. For a more comprehensive comparison, see Section 6.

14



Example 1. (Normal (0,1)-family ). Suppose that X is a normal random variable with
density
f(z|0) = (2m) Y2 exp(—6°/2) exp(fz) exp(—2°/2), —oo0 <z < oo
Here the natural parameter space )y = (—00,00). If 8 is bounded, i.e. if |6 < 6, then ¢,
of (42) with 6, = —0, and 0, = 0, has a rate of convergence of O(n~'(Inn)"(Inlnn)?). Note

that the rate of Singh’s estimator is close to O(n~2—1/(+2)) for r > 1. So under the same

assumption, our rate is faster.

Example 2. (Gamma (0, s)-family for s > 1). Suppose that X is a gamma random

variable with density
F(z]0) = (0(s))7*(—0)"° exp(fz)z* ", z>0, s>1

Here the natural parameter space Qg = (—00,0). If —oo < 6; < 6 < 6; <0, then ¢, of (42)
has a rate of convergence of O(n~*(Inn)7(Inlnn)?), which is better than Singh’s polynomial

rate in Singh (1979).

Example 3. (4 population having the density with infinite many discontinuities ). Sup-

pose that X is a random variable with density
f(z]0) = (—0)(exp(0) — 1) exp(fz Z (I + D) jpca<it, z > 0.
=0

Here the natural parameter space €y = (—00,0). For this distribution, Theorem 3.1 is
applicable and our rate O(n~!(Inn)”(Inlnn)?) is better than Singh’s rate O (n~2r—1)/(+2r))
under the assumption that © € [6;,0,] C Q. Since h(z) is not differentiable, Pensky’s
method in Pensky (1998) fails to giving the rate of convergence.

Now we give one example for the application of Theorem 3.1 in Case III distributions.

Example 4. Suppose that X is a random variable from the following truncated expo-

15



nential distribution:
F(z]0) = 6(1 — exp(8)) " exp(z), 0<z<l

Here the natural parameter space = (0,00). If 0 < 6; < 8 < 65 < oo, then ¢,(x) of (42)

has a rate of of convergence O(n~1(Inn)*(Inlnn)?).

5 Proofs.

Proof of Lemma 2.1. For any G1,G> € G, we have

inf sup(R(¢n, G) — R(ée, G)] 2 jnf  sup [R(¢n,G) = R(¢c, G)] (53)

€ Geg €D Ge{G1,Ga}

Then it follows that

Jnf, sup [E(6n(2) — ¢6(2))*]ac(z)h(z)dz (54)
> & inf [ [1B((z) - der(@) e (@)h(a)da
+ [1E@n(a) ~ 02(2))*laca(e)h(a)ds]
> 2 ot [ [(B(6a(a) - d01(0)lafe)h(z)dz

+ [1B($a(@) — dealz) Plel@)h(z)ds]
> Lt [ sup [F(a(o) - dor(@)la@h(@)dz

2 $ncd Ge{G1,Ga2}

> 2/ inf  sup dn(x ) — ¢c1(z))?|a(z)h(x)dz

€2 ge{G, Gz}

This completes the proof of Lemma 2.1.

Proof of Lemma 2.3. From (21), it is clear that

—fi(z) + fo(z)
1++n

Note that fo(z) = mo J;’ exp(0z)df and fi(z) = myumg Ja? exp(f(z + z))d. Then there

falz) = filz) = (55)

16



exist [; > 0 and [ > 0 such that for all z € (a,b),

< fo(z) _ 0012 exp(0z)do )
"= Au(a) fe? exp(6(z + xo))do —
Therefore
2 [fi(z) = fo(=))?
JWVA@ ~VREPe < [SE
1 _ fo(z) 2Vdr
< v/ R e
C
= %
for some C' > 0. On the other hand,
O ol — V@)t () du(e)
$2(2) = #1(2) Vna(z) + ap(z)  ai(z)
Po(z)an(z) — ao(z)hi(z
a1(z)[v/nos(z) + ool

Since

ag(z) _ fo(z)
ai(z)  fi(z)

I <

<l
There exists { > 0 such that

(¢2(z) = ¢1(2))* 2

X

l
n af(z)

This completes the proof of Lemma 2.3.

Proof of (31) and (32). To prove (31), it is sufficient to show that

po+ &+ 4 B =1
BBt =0

Po pi P _Pm
m+1 + m+2 + + 2m+1 0.

(56)

(57)

(59)

(60)

(61)

Then we need to show that p, (0 < s < m) is the solution of (61). Using Cramer’s rule, we
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have, for 0 < s < m,

1
1 1 e
1 1
2 0 m+2
1 1
— m1 0 2m-+] — d€t2
Ds 1 1 1 det.’
s+1 m+1 €ty
1 1 R S
2 s+2 m—+2
——1 DY 1 .. _1
m—+1 s+m+1 2m+1

where det, is the numerator of p, and det; is the denominator of p,. A simple calculation

shows that
ot — [mi(m — 1)!--- 21
T+ Dim+ 2)- 2m + 1)!
and
et — (—=1)+2(m)?[(m — 1)!(m — 2)!-- - 213 (s + m + 1)!
27 T m+ 2 (m+3) - 2m+ D) (s + D)lsl(m — s)!
Thus

(=1)*(m+1)(m+ s+ 1)!
(s +Dlsl(m —s)t

Ds =

So (31) is proved. The proof of (32) is similar. It is omitted here.

Proof of Lemma 3.1. We prove (44) only. The proof of (45) is similar. Let 6y =
|61] V |62]. In Case I, using Taylor expansion and (31).

KOU(&%_—:E)
un(x) )

= /Qc(H)egde(Q) + u’ /Q 0(9)60’”[/01 Koy (t)e?" (—%t!)—vdt]dG(H),

E|

where t* € (0,1). Note that

1 * t v 1
/ Koy (t)e™* wT?dt < e / | Koo (t)]dt = e®opy/”. (63)
0 ! 0




Then
| Bl (z)] — ac(z)| < e¥opy*ubac(z) (64)

Note that for z < 0, 0 <t < 1, h(z + ut) > h(z) and

1 [KOU(t)]2 z+0ut 600
V(I'I‘[Oén(.’)?)] < ;'L—E m0(9)60 +0 dth(e) < nu@(:ﬂ)

poac(z). (65)

Similarly, Var[o,(z)] < e®pyag(z)/[nuh(z)] for z > 0. Then (44) is proved.

Proof of Lemma 3.3. We prove (46) for different cases of (x).
Case 1. Let 7 satisfy 6; —n € Q and 6, +n € Q. For any 6 € [0, — 1,02 + 1], f(z|0) is

bounded on (—o0, 00). For any (6,z) € [61 — 1,62 +n] x [0,00), we have

f(zl6) = c(0) exp(6z)h(z) (66)

< ¢(0) exp((62 + n)z)h(x)

_ o) _
= 0(92+n)f(~'6|0—92+77)-

For any (0, z) € [0, — 1,02 + 1] X (—00,0), we have

f(z|f) <

‘ 7 f(=z]0 =61 —mn). (67)
|

| Since c(f) is a convex function on [61 — 7,62 + 7], it follows from (66) and (67) that there
exists M > 1 such that for any (6,z) € [6; — n, 02 + ] x (—o0, 00)

f(z]0) < M. (68)

Let ¢ = ma)(ge[gl’gz]{c—(cé%, c(ﬂg%-)} V 1. Then ¢ < co. And

ey =iz = [71f rio)aco) s+ [ |[ 1wi0)dce)ds (69)

c /0 7 / c(0 + 1) exp((0 + n)z)h(z)dG(O)]* " exp(—n(1 — r)z)dz

INA

ve [* ([ el0—n) exp((0 ~ n)a)h(@)dGO)] exp(n(1 r)z)ds

—00
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IA

cM[/Oo<> exp(—n(l — r)z)dr + /_OOO exp(n(1 — r)z)dz]
2cM
n(l—r1)

Case I11. Note that there exists M > 1 such that for any 6 € [6;,6,] and for any z € (0, 1)

f(z16) < M. (70)
Then
[ow)de = [ M1ar < )
Case II. Note that
/Ooo[fc(w)]l“"dw = /0 Uel@)do + /1 “fel@)"ds. (72)

Then Lemma 3.3 in this case follows the methods used in the proofs for Case I and Case IIIL.

6 Summary and Discussion

In this paper, we have studied the estimation problem in the exponential family. First we
proved that the best possible rate of empirical Bayes estimators is O(1/n) if 6 is distributed
within a bounded compact set. This gives a goal that we are working toward in constructing
the empirical Bayes estimators. For a long time, people have been thinking that O(1/n) is
a natural lower bound rate. But it had never been proved.

Also we have constructed an estimator which achieves a rate of O(n~*(Inn)"(Inlnn)?)
under the assumption that 6 is distributed within a bounded compact set. Under the same
assumption, this is the fastest rate comparing to the rates that have appeared in the literature
before.

Most recent significant results on this estimation problem are published by Singh (1979)

and Pensky (1998). In their papers, they constructed the empirical Bayes estimators and
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investigated the convergence rate of the estimators. Singh (1979) used the kernel method
and Pensky (1998) applied the advanced wavelet techniques in their construction. Both
papers allow the unboundedness of § but get a polynomial rate. For Singh’s result, the rate
will stay the same even under additional assumption that €2 is a compact set. So our result
is much better than his under the same assumption. To get a rate like we have here from
Pensky’s result, the existence of all moments of 6 is necessary. Also the degree of smoothness
of f(z|6) is a key factor to determine the rate of convergence. If the degree of smoothness is

low, the rate is slow even if 4 is distributed within a compact set.
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